
EGGN 512 Computer Vision Spring 2013

1

Homework 4 - SOLUTIONS
Due Monday, March 4, 2013 (by 8:00 pm)

Notes: Please email me your solutions for these problems (in order) as a single Word or PDF document. If you do
a problem on paper by hand, please scan it in and paste it into the document (although I would prefer it typed!).

1. (25 pts) A set of 2D points)()()1()1()()1(,,,,,, N
A

N
AAA

N
AAA yxyx ppP is extracted

from image A. Corresponding points)()1(,, N
BBB ppP are extracted from image B.

You want to find a scaled similarity transform1 that aligns the two, using a least squares

fit. The transformation can be written as a nonlinear function xPfP ,AB , where

 Tyx tts ,,,x is the vector of unknown transformation parameters.

a. Write the symbolic form of the Jacobian matrix of f.
b. Write code to solve for the transformation, using the point correspondences

given below (for an initial guess, use s=1, and zeros for the other parameters).
What is the final residual error (in terms of the sum of the squared errors)?

Image points from image A (x;y):

 126 34 170 103
 60 107 77 163

Corresponding points from image B (x;y):
 173 95 196 121
 49 47 77 107

Solution: The scaled similarity transform is

1100

cossin

sincos

100

00

00

1

)(

)(

)(

)(

i
A

i
A

y

x
i

B

i
B

y

x

t

t

s

s

y

x

or

 y

i
A

i
A

i
B

x
i

A
i

A
i

B

stysxsy

stysxsx

)()()(

)()()(

cossin

sincos

(a) The Jacobian is

1 See lecture notes on 2D-2D image transforms, slide 6.

EGGN 512 Computer Vision Spring 2013

2

32322212

322212

312111

NxNNN

j

i

xfxfxf

xfxfxf

xfxfxf

x

f

J

yx

yx

tftffsf

tftffsf

2222

1111

or

syssxtyx

ssyxstyx

AAyAA

AAxAA

0sincoscossin

0cossinsincos
)1()1()1()1(

)1()1()1()1(

J

 (b) Here is the Matlab code:

% HW4 problem 1
clear all, close all

% Here are the corresponding points
pA = [
 126 34 170 103;
 60 107 77 163;
 1 1 1 1];
pB = [
 173 95 196 121;
 49 47 77 107];
N = size(pA,2);

s = 1.0;
theta = 0;
tx = 0.0;
ty = 0;
x = [s; theta; tx; ty]; % initial guess

while true
 disp('Parameters (s; theta; tx; ty):'), disp(x);

 y = fTransform(x, pA); % Call function to compute expected measurements

 dy = reshape(pB,[],1) - y; % new residual
 fprintf('Residual (sum of squared error): %f\n', sum(dy.^2));

 J = zeros(2*N,4);

 % Fill in values of J
 s = x(1); theta = x(2);
 tx = x(3); ty = x(4);
 for i=1:N
 xA = pA(1,i); yA = pA(2,i);
 J(2*(i-1)+1, :) = [
 xA*cos(theta)-yA*sin(theta)+tx, -s*xA*sin(theta)-s*yA*cos(theta), s, 0];

EGGN 512 Computer Vision Spring 2013

3

 J(2*(i-1)+2, :) = [
 xA*sin(theta)+yA*cos(theta)+ty, s*xA*cos(theta)-s*yA*sin(theta), 0, s];

 end

 dx = pinv(J)*dy;

 % Stop if parameters are no longer changing
 if abs(norm(dx)/norm(x)) < 1e-6
 break;
 end

 x = x + dx; % add correction
end

And the function to transform a set of points:

function y = fTransform(x, pIn)
% Do 2D scaled rigid transform

% Get params
s = x(1);
theta = x(2);
tx = x(3);
ty = x(4);

H = [s 0 0; 0 s 0; 0 0 1]*...
 [cos(theta) -sin(theta) tx;
 sin(theta) cos(theta) ty;
 0 0 1];

pOut = H*pIn; % Transform points, result is a 3xN matrix

% Reshape to be a 2Nx1 vector in the form (x1;y1;x2;y2; ... yN)
y = reshape(pOut(1:2, :), [], 1);

return

The final result:

Parameters (s; theta; tx; ty):
 0.7479
 0.5068
 150.2917
 -47.9060
Residual (sum of squared error): 3.145506

2. (25 pts) Your task in this problem is to do some experiments with the SIFT code

developed in class. This code extracted SIFT features from two images, matched the
features, and found a set of correspondences that had the same scale, rotation, and
location. The code can be used to recognize an object in a cluttered scene. Download

EGGN 512 Computer Vision Spring 2013

4

the image dataset from the website
http://www.computing.dundee.ac.uk/staff/jessehoey/teaching/vision/project1.html.

a. Take the object images “book1.pgm” and “book2.pgm”. Look at each of the

images named “Img0[i].pgm”, where [i]=1...10., and determine whether each
object is present in the scene (note: each object is present in 5 of the images).
Now use the SIFT code to match each object to each image, and determine the
number of points that were matched.

b. Using your results from above, decide upon a threshold on the number of feature

matches that can classify whether the object is present in an image. Ideally, if
you get that number of matches or more, the object is actually present in the
image; otherwise, if you get fewer matches, the object is actually not present.
You may not be able to find a threshold that gives perfect classification results,
but choose the value that the minimizes the number of misses (number of images
that contained the object that were classified as not containing the object) and
the number of false positives (number of images that do not contain the object
that were classified as containing the object).

c. Now match the two objects to the test images named “TestImg0[i].pgm”, where

[i]=1...10, and use the same threshold to indicate the presence of the object.
Compute the number of misses and the number of false positives.

Solution:

I ran the code that follows at the end of this problem. Here are the parameters I used (I didn’t try
optimizing any of them):

Parameter Value Description
Peak_thresh,
Edge_thresh

Peak_thresh = 0
(0 = default)
Edge_thresh =
10 (10 = default)

Limits the number of features detected by
vl_sift

matching threshold
for vl_ubcmatch

Threshold = 2.0
(default is 1.5)

Descriptor D1 is matched to a descriptor D2 only if
the distance d(D1,D2) multiplied by thresh is not
greater than the distance of D1 to all other
descriptors

Resolution of Hough
parameter array

x,y is divided
into 5 bins
theta is divided
into 9 bins
scale is divided

This is the resolution of the Hough array that
accumulates votes for a particular (x,y,theta,scale)

EGGN 512 Computer Vision Spring 2013

5

into 5 bins

The results of matching two objects (book1 and book2) to each of the training images:

Training
image

book1 book2
Actually
in image

(y/n)?

points
matched

Classification
result (y/n)

Actually
in image

(y/n)?

points
matched

Classification
result (y/n)

Img01.pgm y 7 y y 75 y
Img02.pgm y 15 y y 40 y
Img03.pgm y 3 n y 137 y
Img04.pgm y 8 y n 1 n
Img05.pgm y 13 y n 2 n
Img06.pgm n 2 n n 1 n
Img07.pgm n 2 n y 8 y
Img08.pgm n 4 y y 9 y
Img09.pgm n 2 n n 3 n
Img010.pgm n 1 n n 2 n

So from these results, it looks like that if we simply set a threshold of 4 or more points matched,
then we would have only one false positive and one miss out of these 20 runs. The false positive
(shown in green above) would be incorrectly detecting book1 in Img08, because it really is not in
the scene. The miss (shown in red above) would be incorrectly saying that book1 is not in
Img03, because it really is in the scene.

Two example runs are shown below. This is the result of matching book1.pgm to Img01.pgm
(the object is in the scene, and 7 points are matched):

Here is the result of matching book1.pgm to Img06.pgm (the object is not in the scene, and 2
points are matched):

19

20

21

22

23

24

25

19

20

2122

23

24
25

EGGN 512 Computer Vision Spring 2013

6

Here are the results of matching book1 and book2 to the test data:

Test image

book1 book2
Actually
in image

(y/n)?

points
matched

Classification
result present

(y/n)?

Actually
in image

(y/n)?

points
matched

Classification
result present

(y/n)?
TestImg01.pgm y 6 y y 7 y
TestImg02.pgm y 16 y n 2 n
TestImg03.pgm n 2 n n 3 n
TestImg04.pgm y 4 y n 1 n
TestImg05.pgm n 1 n y 136 y
TestImg06.pgm n 1 n y 19 y
TestImg07.pgm n 1 n y 7 y
TestImg08.pgm n 3 n n 2 n
TestImg09.pgm y 2 n n 1 n
TestImg010.pgm y 3 n y 127 y

If we use the threshold of 4 or points needed to signal a detection, then we have two false
negatives (shown in red in the table above) and no false positives.

Here is the complete code (other than the functions from the vl_feat library):

clear all
close all

% Need to do this to set up the pathname:
%run('C:\Users\whoff\Documents\Research\SIFT\vlfeat-0.9.16\toolbox\vl_setup');

I1 = imread('images/book2.pgm');
I1 = single(I1); % Convert to single precision floating point

% These parameters limit the number of features detected
peak_thresh = 0; % increase to limit; default is 0
edge_thresh = 10; % decrease to limit; default is 10

45

45

EGGN 512 Computer Vision Spring 2013

7

[f1,d1] = vl_sift(I1, ...
 'PeakThresh', peak_thresh, ...
 'edgethresh', edge_thresh);
fprintf('Number of frames (features) detected: %d\n', size(f1,2));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Second image
I2 = single(imread('images/TestImg010.pgm'));

% These parameters limit the number of features detected
peak_thresh = 0; % increase to limit; default is 0
edge_thresh = 10; % decrease to limit; default is 10

[f2,d2] = vl_sift(I2, ...
 'PeakThresh', peak_thresh, ...
 'edgethresh', edge_thresh);
fprintf('Number of frames (features) detected: %d\n', size(f2,2));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Threshold for matching
% Descriptor D1 is matched to a descriptor D2 only if the distance d(D1,D2)
% multiplied by THRESH is not greater than the distance of D1 to all other
% descriptors
thresh = 2.0; % default = 1.5; increase to limit matches
[matches, scores] = vl_ubcmatch(d1, d2, thresh);
fprintf('Number of matching frames (features): %d\n', size(matches,2));

indices1 = matches(1,:); % Get matching features
f1match = f1(:,indices1);
d1match = d1(:,indices1);

indices2 = matches(2,:);
f2match = f2(:,indices2);
d2match = d2(:,indices2);

%%%
% Between all pairs of matching features, compute
% orientation difference, scale ratio, and center offset
allScales = zeros(1,size(matches,2)); % Store computed values
allAngs = zeros(1,size(matches,2));
allX = zeros(1,size(matches,2));
allY = zeros(1,size(matches,2));

for i=1:size(matches, 2)
 scaleRatio = f1match(3,i)/f2match(3,i);
 dTheta = f1match(4,i) - f2match(4,i);

 % Force dTheta to be between -pi and +pi
 while dTheta > pi dTheta = dTheta - 2*pi; end
 while dTheta < -pi dTheta = dTheta + 2*pi; end

 allScales(i) = scaleRatio;
 allAngs(i) = dTheta;

 x1 = f1match(1,i); % the feature in image 1
 y1 = f1match(2,i);
 x2 = f2match(1,i); % the feature in image 2
 y2 = f2match(2,i);

EGGN 512 Computer Vision Spring 2013

8

 % The "center" of the object in image 1 is located at an offset of
 % (-x1,-y1) relative to the detected feature. We need to scale and rotate
 % this offset and apply it to the image 2 location.
 offset = [-x1; -y1];
 offset = offset / scaleRatio; % Scale to match image 2 scale
 offset = [cos(dTheta) +sin(dTheta); -sin(dTheta) cos(dTheta)]*offset;

 allX(i) = x2 + offset(1);
 allY(i) = y2 + offset(2);
end

% Use a coarse Hough space.
% Dimensions are [angle, scale, x, y]
% Define bin centers
aBin = -pi:(pi/4):pi;
sBin = 0.5:(2):10;
xBin = 1:(size(I2,2)/5):size(I2,2);
yBin = 1:(size(I2,1)/5):size(I2,1);

H = zeros(length(aBin), length(sBin), length(xBin), length(yBin));
for i=1:size(matches, 2)
 a = allAngs(i);
 s = allScales(i);
 x = allX(i);
 y = allY(i);

 % Find bin that is closest to a,s,x,y
 [~, ia] = min(abs(a-aBin));
 [~, is] = min(abs(s-sBin));
 [~, ix] = min(abs(x-xBin));
 [~, iy] = min(abs(y-yBin));

 H(ia,is,ix,iy) = H(ia,is,ix,iy) + 1; % Inc accumulator array
end

% Find all bins with 3 or more features
[ap,sp,xp,yp] = ind2sub(size(H), find(H>=3));

%%
% Get the features corresponding to the largest bin
nFeatures = max(H(:)); % Number of features in largest bin
fprintf('Largest bin contains %d features\n', nFeatures);
[ap,sp,xp,yp] = ind2sub(size(H), find(H == nFeatures));
indices = []; % Make a list of indices
for i=1:size(matches, 2)
 a = allAngs(i);
 s = allScales(i);
 x = allX(i);
 y = allY(i);

 % Find bin that is closest to a,s,x,y
 [~, ia] = min(abs(a-aBin));
 [~, is] = min(abs(s-sBin));
 [~, ix] = min(abs(x-xBin));
 [~, iy] = min(abs(y-yBin));

 if ia==ap(1) && is==sp(1) && ix==xp(1) && iy==yp(1)
 indices = [indices i];
 end
end

EGGN 512 Computer Vision Spring 2013

9

% Show matches to features in largest bin as line segments
figure, imshow([I1,I2],[]);
o = size(I1,2) ;
line([f1match(1,indices);f2match(1,indices)+o], ...
 [f1match(2,indices);f2match(2,indices)]) ;
for i=1:length(indices)
 x = f1match(1,indices(i));
 y = f1match(2,indices(i));
 text(x,y,sprintf('%d',indices(i)), 'Color', 'r');
end
for i=1:length(indices)
 x = f2match(1,indices(i));
 y = f2match(2,indices(i));
 text(x+o,y,sprintf('%d',indices(i)), 'Color', 'r');
end

%%
% Fit an affine transformation to those features.
% We use affine transformation because the image of a planar surface
% undergoing a small out-of-plane rotation can be approximated by an
% affine transformation.

% Create lists of corresponding points pA and pB.
pA = [f1match(1,indices); f1match(2,indices)];
pB = [f2match(1,indices); f2match(2,indices)];
N = size(pA,2);

% Calculate the transformation T from I1 to I2; ie p2 = T p1.
A = zeros(2*N,6);
for i=1:N
 A(2*(i-1)+1, :) = [pA(1,i) pA(2,i) 0 0 1 0];
 A(2*(i-1)+2, :) = [0 0 pA(1,i) pA(2,i) 0 1];
end
b = reshape(pB, [], 1);
x = A\b;

T = [x(1) x(2) x(5);
 x(3) x(4) x(6);
 0 0 1];
fprintf('Derived affine transformation:\n');
disp(T);

r = A*x-b; % Residual error
ssr = sum(r.^2); % Sum of squared residuals

% Estimate the error for each image point measurement.
% For N image points, we get two measurements from each, so there are 2N
% quantities in the sum. However, we have 6 degrees of freedom in the result.
sigmaImg = sqrt(ssr/(2*N-6)); % Estimated image std deviation
fprintf('#pts = %d, estimated image error = %f pixels\n', N, sigmaImg);

%%
% Ok, apply the transformation to image 1 to align it to image 2.
% We'll use Matlab's imtransform function.
tform = maketform('affine', T');
I3 = imtransform(I1,tform, ...
 'XData', [1 size(I1,2)], 'YData', [1 size(I1,1)]);

% Overlay the images

EGGN 512 Computer Vision Spring 2013

10

RGB(:,:,1) = (I2+I3)/2;
RGB(:,:,2) = (I2+I3)/2;
RGB(:,:,3) = I2/2;

RGB = uint8(RGB);
figure, imshow(RGB);

3. (25 pts) The objective of this exercise is to compute the pose of a known object with

respect to a camera, from a set of correspondences between object points and observed
image points. In Lecture 16 on “pose estimation”, I gave an example of how to compute
the pose using nonlinear least squares. Using that method, find the pose of the 5-point
concentric circle target with respect to the camera. Use the images “robot1_rect.jpg”,
“robot2_rect.jpg”, and “robot3_rect.jpg” on the course website2. The measurements of
the model (in inches) are indicated in the figure. The top middle target feature is
midway between the top left and the top right feature. Use the top left feature as the
origin of the target’s coordinate system, with its x-axis pointing to the right, its y-axis
pointing down, and its z-axis pointing into the page.

(a) For each image, give the pose of the target with respect to the camera (in terms
of XYZ angles and XYZ translation) in each image.
(b) Use that pose to draw the XYZ coordinate axes of the target as an overlay on
each image.

Note:

 Your program should automatically detect and identify the CCC targets in the
images, using the methods developed in HW2.

 If you need to, it is ok to use a different initial guess for the pose in each image,
in order to get your algorithm to converge to the correct solution (you will know

2 Note – these images have been “rectified” to remove lens distortion. We will cover how to do this a little later in
the course. We will also cover how to compute the camera intrinsic parameters

7.4

4.55

EGGN 512 Computer Vision Spring 2013

11

that the solution is correct because the graphical overlays will look right). The
model is about 95 inches from the camera in the first image.

 Use the following values for the camera intrinsic parameters: focal length =
2443 (in pixels), image center (x,y in pixels) = (1124, 831).

Solution: The first part of the code is directly from Homework 2:

% Homework 4 problem 4.
% Find the pose of a 5-ccc target.

clear all
close all

S=strel('disk', 5); % structuring element

I=imread('robot1_rect.jpg'); % Edit name to read in different images
W=im2bw(I,graythresh(I));
W=imopen(W,S);
[LW,nw]=bwlabel(W);
statsWhite = regionprops(LW);
figure, imshow(LW), impixelinfo;

B=~W; % complement image, to find black blobs
[LB,nb]=bwlabel(B);
statsBlack = regionprops(LB);
figure, imshow(LB), impixelinfo;

D = 3; % threshold for how close centroids must be
figure, imshow(I,[]);
n = 0; % number of targets found
for i=1:nw
 for j=1:nb
 if norm(statsWhite(i).Centroid - statsBlack(j).Centroid) < D
 if statsWhite(i).Area < statsBlack(j).Area
 x0 = (statsWhite(i).Centroid(1) + ...
 statsBlack(j).Centroid(1))/2;
 y0 = (statsWhite(i).Centroid(2) + ...
 statsBlack(j).Centroid(2))/2;

 % Draw crosshair on image
 line([x0-20 x0+20], [y0 y0], 'Color', 'r');
 line([x0 x0], [y0-20 y0+20], 'Color', 'r');

 % Draw bounding box around outer (black) blob
 rectangle('Position', statsBlack(j).BoundingBox, ...
 'EdgeColor', 'r');

 % Save target location
 n = n + 1;
 target(:, n) = [x0; y0];
 end
 end
 end
end

%%
% Do correspondence

% First find the UM point. This is the point that is closest to the

EGGN 512 Computer Vision Spring 2013

12

% midpoint between two other points.
idMidpoint = zeros(5,5);
dMidpoint = Inf(5,5);
for i=1:5
 for j=i+1:5
 pMid = (target(:, i) + target(:, j))/2; % ideal midpoint

 d = Inf(5,1); % Distances of a 3rd point to the ideal midpoint
 for k=1:5
 if k==i || k==j continue; end
 d(k) = norm(pMid-target(:, k));
 end

 % Get the point that is closest to the ideal midpoint btwn i,j
 [dmin,k] = min(d);
 dMidpoint(i,j) = dmin;
 idMidpoint(i,j) = k;
 end
end
[i1,i3] = find(dMidpoint == min(dMidpoint(:)));
i2 = idMidpoint(i1,i3);

% Find the two other points, other than the triple we have already found
allids = 1:5;
ids = find(~(allids==i1 | allids==i2 | allids==i3));
i4 = ids(1);
i5 = ids(2);

% Signed area is the determinant of the 2x2 matrix [p4-p1, p3-p1]
M = [target(:,i4)-target(:,i1) target(:,i3)-target(:,i1)];
if det(M) < 0
 idTargets(1) = i1; % UL
 idTargets(2) = i2; % UM
 idTargets(3) = i3; % UR;
else
 idTargets(1) = i3; % UL
 idTargets(2) = i2; % UM
 idTargets(3) = i1; % UR;
end

% LL is the closer point to UL
if norm(target(:,i4)-target(:,idTargets(1))) < norm(target(:,i5)-
target(:,idTargets(1)))
 idTargets(4) = i4; % LL
 idTargets(5) = i5; % LR
else
 idTargets(4) = i5; % LL
 idTargets(5) = i4; % LR
end

% Label the targets in the image
p = target(:, idTargets(1)); text(p(1)+15, p(2)+15, 'UL');
p = target(:, idTargets(2)); text(p(1)+15, p(2)+15, 'UM');
p = target(:, idTargets(3)); text(p(1)+15, p(2)+15, 'UR');
p = target(:, idTargets(4)); text(p(1)+15, p(2)+15, 'LL');
p = target(:, idTargets(5)); text(p(1)+15, p(2)+15, 'LR');

fprintf('Target locations (UL,UM,UR,LL,LR):\n');
for i=1:5
 p = target(:, idTargets(i));
 fprintf('(x,y) = (%f,%f)\n', p(1), p(2));
end

EGGN 512 Computer Vision Spring 2013

13

The result of running this on the first image:

Next, we use the iterative least squares pose estimation code developed in class:

%%%
% Find the pose from the point correspondences
imshow(I, [])

% First specify the points in the model's coordinate system (inches), in
% the same order as the detected points; ie UL,UM,UR,LL,LR. Each column is
% a point in the form X;Y;Z;1.
P_M = [0 3.7 7.4 0 7.4;
 0 0 0 4.55 4.55;
 0 0 0 0 0;
 1 1 1 1 1];

% Define camera parameters
f = 2443; % focal length in pixels
cx = 1124;
cy = 831;

K = [f 0 cx; 0 f cy; 0 0 1]; % intrinsic parameter matrix

% Create the vector of measurements, as a single column vector in the form
% x1;y1;x2;y2; ... yN

UL UMUR

LL
LR

EGGN 512 Computer Vision Spring 2013

14

y0 = [];
for i=1:5
 p = target(:, idTargets(i));
 y0 = [y0; p(1); p(2)];
end

% Make an initial guess of the pose [ax ay az tx ty tz].
% We know the target is about 80 inches away (tz).
% Leave the other parameters at zero.
% (For image robot3_rect.jpg, I had to use ay=0.5, az=0.5).
x = [0; 0.0; 0.0; 0; 0; 80];

% Get predicted image points by substituting in the current pose
y = fProject(x, P_M, K);

for i=1:2:length(y)
 rectangle('Position', [y(i)-8 y(i+1)-8 16 16], 'FaceColor', 'r');
end

pause

for i=1:10
 fprintf('\nIteration %d\nCurrent pose:\n', i);
 disp(x);

 % Get predicted image points
 y = fProject(x, P_M, K);

 imshow(I, [])
 for i=1:2:length(y)
 rectangle('Position', [y(i)-8 y(i+1)-8 16 16], ...
 'FaceColor', 'r');
 end
 pause;

 % Estimate Jacobian
 e = 0.00001; % a tiny number
 J(:,1) = (fProject(x+[e;0;0;0;0;0],P_M,K) - y)/e;
 J(:,2) = (fProject(x+[0;e;0;0;0;0],P_M,K) - y)/e;
 J(:,3) = (fProject(x+[0;0;e;0;0;0],P_M,K) - y)/e;
 J(:,4) = (fProject(x+[0;0;0;e;0;0],P_M,K) - y)/e;
 J(:,5) = (fProject(x+[0;0;0;0;e;0],P_M,K) - y)/e;
 J(:,6) = (fProject(x+[0;0;0;0;0;e],P_M,K) - y)/e;

 % Error is observed image points - predicted image points
 dy = y0 - y;
 fprintf('Residual error: %f\n', norm(dy));

 % Ok, now we have a system of linear equations dy = J dx
 % Solve for dx using the pseudo inverse
 dx = pinv(J) * dy;

 % Stop if parameters are no longer changing
 if abs(norm(dx)/norm(x)) < 1e-6
 break;
 end

 x = x + dx; % Update pose estimate
end

u0 = fProject(x, [0;0;0;1], K); % origin
uX = fProject(x, [1;0;0;1], K); % unit X vector

EGGN 512 Computer Vision Spring 2013

15

uY = fProject(x, [0;1;0;1], K); % unit Y vector
uZ = fProject(x, [0;0;1;1], K); % unit Z vector

line([u0(1) uX(1)], [u0(2) uX(2)], 'Color', 'r', 'LineWidth', 3);
line([u0(1) uY(1)], [u0(2) uY(2)], 'Color', 'g', 'LineWidth', 3);
line([u0(1) uZ(1)], [u0(2) uZ(2)], 'Color', 'b', 'LineWidth', 3);

We also need the function “fProject.m”:

function p = fProject(x, P_M, K)
% Project 3D points onto image

% Get pose params
ax = x(1); ay = x(2); az = x(3);
tx = x(4); ty = x(5); tz = x(6);

% Rotation matrix, model to camera
Rx = [1 0 0; 0 cos(ax) -sin(ax); 0 sin(ax) cos(ax)];
Ry = [cos(ay) 0 sin(ay); 0 1 0; -sin(ay) 0 cos(ay)];
Rz = [cos(az) -sin(az) 0; sin(az) cos(az) 0; 0 0 1];
R = Rz * Ry * Rx;

% Extrinsic camera matrix
Mext = [R [tx;ty;tz]];

% Project points
ph = K*Mext*P_M;

% Divide through 3rd element of each column
ph(1,:) = ph(1,:)./ph(3,:);
ph(2,:) = ph(2,:)./ph(3,:);
ph = ph(1:2,:); % Get rid of 3rd row

p = reshape(ph, [], 1); % reshape into 2Nx1 vector
return

I used the same code for all images, with the initial guess of the pose being (ax,ay,az,tx,ty,tz) =
[0; 0.0; 0.0; 0; 0; 80]. However, for image robot3_rect.jpg, I had to change ay=0.5, az=0.5 in
order to get it to converge.

Here is the pose of the target with respect to the camera (in terms of XYZ angles and XYZ
translation) in each image:

 robot1_rect.jpg robot2_rect.jpg robot3_rect.jpg
ax (radians) 0.5184 0.5151 0.8844
ay (radians) -0.5588 0.0437 0.4503
az (radians) -0.3099 -0.0494 0.7085
tx (inches) -6.5826 -8.5849 -6.6759
ty (inches) 0.1988 -4.2004 -4.5470
tz (inches) 95.4803 78.0897 46.7477

EGGN 512 Computer Vision Spring 2013

16

Here is the overlay of the XYZ coordinate axes of the target on each image. (I have zoomed in so
you can see the axes more clearly)

robot1_rect.jpg

robot2_rect.jpg

robot3_rect.jpg

EGGN 512 Computer Vision Spring 2013

17

4. (25 pts) In the previous problem, you computed the Jacobian matrix numerically. It is

also possible to compute the Jacobian symbolically (i.e., by doing the derivatives by
hand), although the expressions can be rather complicated. However, under certain
conditions the Jacobian is easier to compute symbolically. In particular, if the rotation
angles are close to zero3, the rotation matrix can be simplified using the “small angle

approximation”, which is cos() ≈ 1, sin() ≈ , and * ≈ 0.

(a) Write the 3x3 rotation matrix ZYX ,,R , using the small angle approximation.

(b) Write the equations for the function that projects a point TZYX ,,P onto an

image using both weak perspective and the small angle approximation.
(c) Finally, write the equations for the Jacobian of that function with respect to the

unknown parameters avgyxZYX Ztt ,,,,, ; i.e., find the expressions in the matrix

avgYXZYX

avgYXZYX

Zytytyyyy

Zxtxtxxxx

J

Solution:

(a) Using the small angle approximation,

3 For example, if you are tracking an object and are just computing the correction to its estimated pose.

EGGN 512 Computer Vision Spring 2013

18

10

10

001

cossin0

sincos0

001

)(

X

X

XX

XXXX

R

10

010

01

cos0sin

010

sin0cos

)(

Y

Y

YY

YY

YY

R

100

01

01

100

0cossin

0sincos

)(Z

Z

ZZ

ZZ

ZZ

R

1

1

1

10

10

001

10

010

01

100

01

01

)()()(),,(

XY

XZ

YZ

X

X

Y

Y

Z

Z

XXYYZZZYX

 RRRR

(b) To project a point onto an image using weak perspective projection, we use PMKp ext ,

where

avg

Y

X

avg Z

trrr

trrr

Z 000
1

000

0010

0001

232221

131211

0

tR
Mext

Using the small angle approximation, this is

avg

YXZ

XYZ

Z

t

t

000

1

1

extM

The standard camera intrinsic parameter matrix is

100

0

0

y

x

cf

cf

K

So the projection is

1
000

1

1

100

0

0

Z

Y

X

Z

t

t

cf

cf

avg

YXZ

XYZ

y

x

PMKp ext

avg

avgyYXZ

avgxXYZ

Z

ZctZYXf

ZctZYXf

We still have to normalize the result by dividing through by the third element:

EGGN 512 Computer Vision Spring 2013

19

y
avg

YXZ

x
avg

XYZ

c
Z

tZYX
f

c
Z

tZYX
f

y

x

(c) Here is the Jacobian of a projected point (x,y) with respect to the unknown parameters

avgyxZYX Ztt ,,,,, , assuming the world coordinates of the point (X,Y,Z) are known:

avg

YXZ

avg

XYZ

avg

avg

YXZ

avgavgavg

avg

XYZ

avgavgavg

avgYXZYX

avgYXZYX

Z

tZYX
XZ

Z

tZYX
YZ

Z

f

Z

tZYX
f

Z
f

Z

X
f

Z

Z
f

Z

tZYX
f

Z
f

Z

Y
f

Z

Z
f

Zytytyyyy

Zxtxtxxxx

100

010

1
00

0
1

0

2

2

J

